The Energy-Aware Operational Time of Wireless Ad-Hoc Sensor Networks

Article’s link


Sensor networks are deployed in numerous military and civil applications, such as remote target detection, weather monitoring, weather forecast, natural resource exploration and disaster management. Despite having many potential applications, wireless sensor networks still face a number of challenges due to their particular characteristics that other wireless networks, like cellular networks or mobile ad hoc networks do not have. The most difficult challenge of the design of wireless sensor networks is the limited energy resource of the battery of the sensors. This limited resource restricts the operational time that wireless sensor networks can function in their applications. Routing protocols play a major part in the energy efficiency of wireless sensor networks because data communication dissipates most of the energy resource of the networks. This paper studies the importance of considering neighboring nodes in the energy efficiency routing problem. After showing that the routing problem that considers the remaining energy of all sensor nodes is NP-complete, heuristics are proposed for the problem. Simulation results show that the routing algorithm that considers the remaining energy of all sensor nodes improves the system lifetime significantly compared to that of minimum transmission energy algorithms. Also, the energy dissipation of neighboring nodes accounts for a considerable amount of the total energy dissipation. Therefore, a method that reduces the energy dissipation by notifying the neighboring nodes to turn off their radio when not necessary is proposed. By reducing the unnecessary energy dissipation of the neighbors, the lifetime is increased significantly.


  • battery
  • sensor
  • routing protocols
  • NP-complete